N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors
نویسندگان
چکیده
The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.
منابع مشابه
Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella
Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. H...
متن کاملThe Correlation of the Presence and Expression Levels of cry Genes with the Insecticidal Activities against Plutella xylostella for Bacillus thuringiensis Strains
The use of Bacillus thuringiensis (Bt) strains with high insecticidal activity is essential for the preparation of bioinsecticide. In this study, for 60 Bt strains isolated in Taiwan, their genotypes and the correlation of some cry genes as well as the expression levels of cry1 genes, with their insecticidal activities against Plutella xylostella, were investigated. Pulsed field gel electrophor...
متن کاملCharacterization of an Insecticidal Toxin and Pathogenicity of Pseudomonas taiwanensis against Insects
Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2) of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly differ...
متن کاملN-substituted 5-chloro-6-phenylpyridazin-3(2H)-ones: synthesis, insecticidal activity against Plutella xylostella (L.) and SAR study.
A series of N-substituted 5-chloro-6-phenylpyridazin-3(2H)-one derivatives were synthesized based on our previous work; all compounds were characterized by spectral data and tested for in vitro insecticidal activity against Plutella xylostella. The results showed that the synthesized pyridazin-3(2H)-one compounds possessed good insecticidal activities, especially the compounds 4b, 4d, and 4h wh...
متن کاملCantharidin and Its Anhydride-Modified Derivatives: Relation of Structure to Insecticidal Activity
Cantharidin is a natural compound of novel structure with ideal insecticidal activity. However, the relationship of structure to insecticidal activity of cantharidin and its derivatives has not been ever clarified. To explore what determines the insecticidal activity structurally of cantharidin-related compounds, two series target compounds 6 and 7 were synthesized by replacing the anhydride ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016